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Sound radiation due to boundary layer transition

By Meng Wang

1. Motivation and objectives

This report describes progress made to date towards calculations of noise pro-
duced by the laminar-turbulence transition process in a low Mach number bound-

ary layer formed on a rigid wall. The primary objectives of the study are to elu-

cidate the physical mechanisms by which acoustic waves are generated, to clarify

the roles of the fluctuating Reynolds stress and the viscous stress in the presence

of a solid surface, and to determine the relative efficiency as a noise source of the

various transition stages. In particular, we will examine the acoustic characteristics

and directivity associated with three-dimensional instability waves, the detached

high-shear layer, and turbulent spots following a laminar breakdown. Additionally,

attention will be paid to the unsteady surface pressures during the transition, which

provide a source of flow noise as well as a forcing function for wall vibration in both

aeronautical and marine applications.

Interest in flow transition as a potential noise source stems from the transient

nature of the transition process (Farabee et al. 1989). A clear understanding of the

phenomena has so far been elusive due to fundamental difficulties associated with

the strong nonlinear effects in the Navier-Stokes equation system. For this rea-

son, rigorous analytical studies are mostly concerned with the early, linear stages

of transition. For instance, Tam & Morris (1980) and Akylas & Toplosky (1986)

examined the sound emitted by linear instability wave packets in a plane shear

layer and a laminar boundary layer, respectively, by using multiple-scale pertur-

bation techniques. The analysis of Haj-Hariri & Akylas (1986), although weakly

nonlinear, is limited to slightly supercritical Reynolds numbers so that the unstable

disturbance is only weakly amplified. Because of the small amplification rate for

linear Tollmien-Schlichting (T-S) waves in a boundary layer, the associated sound

field is typically of very small magnitude.

An alternate approach for studying flow induced sound is the theory due to

Lighthill (1952), which provides a formal expression for the linear acoustic field

driven by equivalent source terms representing the nonlinear turbulent fluctuations

in a spatially concentrated region. The theory, also known as acoustic analogy, is
essentially a rearrangement of the exact equations for mass and momentum con-

servation into a wave equation form. The driving terms on the right hand side

are assumed known a priori rather than treated as part of the solution, thus sim-

plifying the problem tremendously. For compact flows at low Mach number, this

assumption can be viewed as a leading order approximation to the fully coupled

acoustic-fluid dynamic system. By using the method of matched asymptotic expan-

sions based on small Mach number, Crow (1970) shows that Lighthill's solution is

adequate for sound emission from compact eddy regions. More recently, Mitchell
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et al. (1993) tested Lighthill's theory and its extensions against solutions computed

directly from the compressible Navier-Stokes equations, for the case of the merger
of two co-rotating vortices. Excellent agreement has been obtained.

To predict the emitted sound using acoustic analogy theories, one requires knowl-

edge of the source region, or the unsteady flow field. Traditionally, the source terms

are approximated by empirical correlations based on experimental measurements.
The rapid development in CFD applications in recent years has made it possible to

compute the transitional and turbulent flow quantities directly by solving the full
Navier-Stokes equations, thus allowing a more detailed assessment of the acoustic
source. With the currently available supercomputers, direct numerical simulations

(DNS) for controlled boundary layer transition can be carried out up to the lam-
inar breakdown stage (see, for example, Zang and Hussaini 1990; Kleiser & Zang
1991; Fasel 1990). This has motivated us to undertake the present work, focusing

on acoustic processes during boundary layer transition. By combining a DNS ap-

proach for the source region with modeling efforts based on Lighthill's theory, we
attempt to reveal the sound production features during the transition process, in

parameter ranges not accessible previously.

2. Accomplishments

_.1 Formulation

The continuity and momentum equations for a compressible flow above a flat

surface can be combined to generate, in dimensionless form,

+ m-g-_ OX-_Xi p - O_ 202 + 'OzlOxj -OxicOz_
(1)

where

T_ = pu,_j + _-_ - p - n¢ (2)

is called LighthiU's stress tensor. It contains the Reynolds stress (the term is used

in a generalized sense since puiu i contains both mean and fluctuating velocities),

deviation from isentropy (the second term), and the viscous part of the Stokes stress

tensor

"_i = R-_\O_ + o_i _ u_-g-;_k). (3)

In (1)-(3), the velocity components and the thermodynamic variables are nondi-
mensionalized with respect to the undisturbed free-stream values U', p', p', and

I F

T_, respectively. The spatial variables are defined by xi = xi/L I, where L9 is a
characteristic length scale of the flow field such as the boundary layer displacement

thickness and Xi = Mxi. The latter, resembling the outer scale in matched asymp-

totic expansions, is introduced here to facilitate the description of far field acoustic

propagation. We will be using xi and Xi simultaneously to represent the near-field

source region and the far-field observation points, respectively, bearing in mind that



Sound radiation due to boundary layer transition 301

they are not independent of one another. The nondimensional time, t ' ' '= t U£#L:,
is the same for both acoustic and fluid dynamic disturbances. The Mach number is

defined in terms of the equilibrium sound speed in the free stream, M ' ' •= U_/c_,I I I 1

c_ = ('Tp=/p=)_, and the Reynolds number is defined as Re = U'L_/u'.

Eqn. (1) is equivalent to a convective wave equation for a medium moving uni-
formly along the X1 axis, if the right hand side is viewed as distributed source

terms. In the spirit of Lighthill's theory, we treat the right hand side as pure fluid

dynamic quantities confined within the thin boundary layer and decoupled from

acoustic disturbances, on the basis that the latter are much smaller in magnitude.

Thus, the flow noise issue is reduced to a problem of finding the solution to (1)
under the appropriate boundary conditions once the flow field in known.

For a low Mach number flow, the proper scales for the thermodynamic variables
in the boundary layer are

p = 1 + M215, p = 1 + M2_, T = 1 + M2T. (4)

It can be easily shown that the governing equations for an ideal gas have the fol-
lowing form:

(_uj

Oxj

Oui

-- + Ui Ox _

O_ O_

--_ + u_ Ox i

_

Oui 1 0[_ 1 02ui

Ot - 70xi + Re OxjOxj + O(M_)'

- PrRe OxjOx I +P-----r_e OxjOxj

+ + (7)

where the entropy g =/VT- t_ is exactly the second term in Lighthill's stress tensor.

Eqns. (5)-(7) suggest that for low Mach number flows, one only needs to solve the

incompressible version of the governing equations in order to evaluate the acoustic

source terms with reasonable accuracy. In fact, the first two terms in the forcing

function in (1) can be ignored because they are of O(M 2) (cf. (4) and (5)). The

density in the Reynolds stress terms in (2) can be replaced by 1. The viscous stress

terms in Tit, on the other hand, must be retained at the moment even though they

appear to be O(M _). As will become clear later, viscous stress tends to form dipoles
on the solid wall that are efficient acoustic radiators.

The effect of entropy change on sound production deserves special comments. Al-

though it is customary to ignore it entirely in the application of Lighthill's theory,

there is no clear justification for doing so in a transitional boundary layer, based

upon the above analysis. Eqn. (7) implies that the entropy production can be quan-

tified by solving a passive-scalar type of equation together with the incompressible

Navier-Stokes equations, rather than resorting to a fully compressible code. It would

be of interest to pursue this issue in a future endeavor. In the present work, how-

ever, we will focus on the Reynolds stress and viscous stress contributions to sound

production, assuming that the entropy effect is relatively small.

(5)

(6)
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If the O(M) effect of bulk flow convection is ignored, (1) becomes the Lighthill

equation in a uniform acoustic medium at rest. Its solution in the upper half space
X2 _> 0 can be written as (Crighton et al. 1992)

O2 I' To(_,t - IX
4,,-[p(.Z,t)- 1] = M _ J_o dV(¢)ax,axj I.¢- M_I

02 [ Tij(_,t- I,_* - Mff l)
+ M 5 dV (y")

ax:ax; Jvo I.¢"- M_I

, 0 ra2(_,t- IX - My_) dS(y-'), (8)
- 2M _/so I._- M¢I

where X_* = (X1,-X2,X3) is the image of the position )( in the rigid surface

X_ = 0, and unlike indices i and j, a takes the values of 1 and 3 only. The volume

integrations are to be carried out throughout the entire source region, and the

surface integral should be evaluated on the wall. The three terms on the right hand

side of (8) represent, respectively, a volume distribution of acoustic quadrupoles,
reflection on the rigid surfa_:e, and a surface distribution of viscous dipoles. It
should be noted that the dipole term has a coefficient O(M -1 ) times larger than

that for the quadrupole terms, and hence it is not necessarily negligible despite the

apparent smallness of rij.
Under the assumption that the unsteady flow region is small in comparison to

the emitted acoustic wavelengths (compact source), (8) can be approximated by

4_r [p(._, t) - 1)] = M 5 XiXJlxI3+X*X; [_Q,j (t- I_1)

go 1 (t I_1)] (9)

The quadrupole and dipole sources are

O,,(t)=/_o T,_(_,t)dV(y'), R_(t)= _o ,o_(g,t)ds(_). (xo)

They do not contain the retarded potential as in (8) and are, therefore, straightfor-

ward to evaluate. In the far field, [-_1 >> 1, only the first term in the two square

brackets in (9) are of importance.
It is sometimes of interest to calculate the sound field caused by a two-dimensional

boundary layer. A two-dimensional version of (8)-(10) has been derived by the

method of descent, i.e., by integrating (8) along the Ys axis from -¢x_ to +co,
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noting that the source properties are independent of 113. For brevity, only the far
field solution for a compact source is presented here:

_[p(£,t)- 1]= M4 x_ f0= 1 02ixl ('-IXl

M 4 X 2 /oo 1 0 2+

cosh(_)_ ' (11)

The quantities Qax, Q2a, and R1 are surface and line integrals defined as

f f
Q_(t) j_ _j(g,t)as(y-), a,(t) = _l _,2(_,t)ac(u'). (12)

0 0

A similar solution without the solid boundary effect has been obtained by Mitchell
et al. (1993), using a Green's function approach.

2.2 Numerical method and boundary conditions

In order to evaluate the acoustic source terms associated with boundary layer
transition, (5) and (6) are solved using an incompressible Navier-Stokes solver de-

veloped by Le and Moin (1991). The equations are discretized using finite difference

on a staggered grid, with uniform grid spacing in the streamwise (xl) and spanwise

(x3) directions. In the wall-normal direction (x2), non-uniform mesh is employed
to allow grid refinement near the plate. Time advancement is of predictor-corrector

type combined with a fractional step method. Each time step treats the convec-
tive terms explicitly and the viscous terms implicitly. The pressure is calculated
by solving the Poisson equation. The numerical scheme is second order accurate in
both space and time.

The domain of integration consists of a rectangular box that covers 5-10 stream-

wise Tollmien-Schlichting wavelengths in xl and one spanwise wavelength in x3.

The distance from the wall to the free-stream boundary is equal to 20 times the

inflow displacement thickness. A no-slip boundary condition is applied at the solid
wall. At the free-stream boundary, a normal velocity distribution based on the Bla-

sius solution is imposed; in addition, the vorticity is assumed to be negligible there.
In the x3 direction, periodicity is assumed of all dependent variables.

The inflow boundary conditions for the simulations are of the form

(

ui(x, = O) = Rcal_ uB(x2) + e2D u2D(x2 )eiO c-lilt

+ _el 3DuiaD+,(X2)ei[(asin¢)xa_flt]

1 3D 3D-, , i[-(asin¢)xa-_t])
+ -_ ui (x2)e (13)
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where u_(x2) represents the Blasius solution for a 2-D boundary layer, u2D(z2 ) and

u_ D+ (x2) are the least stable linear modes of the Orr-Sommerfeld (Squire) equation

for given frequency/3 and oblique angle _. The eigenfunctions are normalized such
that the maximum streamwise velocity has a magnitude of 1. Since we are primar-

ily interested in laminar breakdown of the fundamental type, the same excitation

frequency is applied to both the 2-D and 3-D disturbances. For 2-D calculations,

one simply ignores the 3-D terms in (13).

At the outflow boundary, an ideal boundary condition must allow smooth passage

of disturbance structures while maintaining the correct mean velocity profile. The

convective boundary condition

+ as1 = 0 (14)

is frequently used for this purpose (see Pauley et al. (1988) for an extensive dis-

cussion), where U is the mean exit velocity. When tested for the case of 2-D T-S

waves, however, the normal velocity u2 exhibits point-to-point oscillations in both
mean and disturbance quantities (Fig. la). In addition, the mean velocity deviates

significantly from the true value (the top curve in Fig. lb) near the exit boundary

zl = 50. Errors for the streamwise velocity ul have the same absolute magnitude

as for u2, but are less prominent in relative terms. These errors occur because of

unphysical boundary layers formed along the exit plane, which are not resolved

properly on the given grid (Johansson 1993).

An improvement has been made by replacing (14) with

(15)

where uiB is the Blasius solution and Uj denotes the characteristic velocity at the

exit plane. U i = (1, 0, 0) for calculations presented in the present work. Eqn. (15)

ensures that the steady solution converges to the laminar velocity profile while

disturbances are allowed to be convected out of the domain. For turbulence simu-

lations, ulB should be replaced by the appropriate mean profiles, perhaps through

an iterative procedure.

One way to remove the wiggles in the disturbance velocities is by grid refinement

near the outflow boundary so that the unphysical boundary layer can be resolved.

This is, however, expensive and often impractical. The method adopted in this

study is to employ a small buffer zone consisting of 5 to 10 grid points next to

the exit boundary. In this zone, the velocity field is filtered at each integration

step using an explicit, three-point low pass filter. As can be observed in Fig. lb,

this expedient approach removes the wiggles quite effectively. Since the buffer zone

is very small and located in the downstream direction, its impact on the overall

computational solution is expected to be negligible.

The time-dependent code is shown to be capable of producing and maintaining

steady state solutions that are in excellent agreement with the Blasius solution. It
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FIGURE 1. Streamwise distribution of mean (--) and disturbance (-----)

normal velocities at x2 = 3.1, caused by T-S waves in a Blasius boundary layer.

(a) is obtained using outflow condition (14), and (b) is obtained using (15) with a

small buffer zone. The inlet Reynolds number Re_ = 1000.

has also been subjected to critical tests for linearly growing, small, two-dimensional

disturbances. The computational results agree well with linear stability theory

results in terms of both the eigenmode shape and the spatial amplification rate.

2.3 Preliminary results

2.3.1 2-D Tollmien-Schlichting waves

The first numerical experiment conducted deals with the sound field produced by
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spatially amphfying, two-dimensional ToUmien-Schlichting waves. A 2-D version

of (5) and (6) is solved using 514 x 66 grid points in a domain (0 < xl < 200,
0 < x2 < 20), where the spatial coordinates are nondimensionalized relative to the

displacement thickness at the inflow boundary. The inflow Reynolds number based
on the displacement thickness is Re_ = 1000.

After a steady flow field has been established, inflow velocities are disturbed at

the least stable frequency corresponding to the 2-D eigenmodes described in (13).
The T-S wave train so created exhibits linear or nonlinear characteristics, depending

on the amplitude of boundary excitation, as demonstrated in Fig. 2. One notices
that, in both cases, there is no appreciable distortion in the T-S waveform near the

inflow/outflow boundary.

An attempt has been made to deduce the far-field sound emitted by the ampli-
fication and/or nonlinearization of T-S waves in the boundary layer. If the flow
Mach number is very small (say, 0.01, as in marine applications), the computa-

tional domain can be considered as a compact source, and (11) is valid. Numerical

integrations of (11) and (12) show basically harmonic density variations at the T-S

wave frequency at a given far-field point ._. However, it is discovered that the

amplitude of the sound signal alte,'s dramatically when the front of the T-S wave
train crosses the outflow boundary. Further numerical tests verify the existence of

a strong, artificial boundary effect on the calculated sound level, which masks the
true sound of flow instability. This arises not because of the numerical boundary

condition treatment for the flow region, but rather due to the fact that the entire T-
S wave train is not included in the finite computational domain. Based on (11), the

calculated sound signal is determined by the time derivatives of the total Reynolds
stress and surface viscous stress in the source region. In the present case since the

source region has artificially defined open boundaries, the time variations of Qij

and R1 (cf. (12)) are caused primarily by T-S waves crossing the boundaries, rather

than by their slow amplification within the region.

The situation is best ilhistrated by considering an isolated 2-D wave packet, in-
stead of the entire wave series, as it traverses the the source region. The wave

packet is generated by multiplying the 2-D mode in (13) by exp [-((t -210)/70)2].

The time history of the longitudinal quadrupole 811 (the double dots denote second

time-derivative) computed from (12) is depicted in Fig. 3, which shows two distinct

regimes of oscillations, one as the packet enters from the upstream boundary and
the other as it exits at downstream. The effect of wave amplification and spreading

is represented .by the relatively quiet regime in-between. Similar behavior has been
observed for Q22 and RI. The unphysical boundary effect on sound calculation

is probably exacerbated because of the compact source assumption. Non-compact

sources (larger M) are acoustically more efficient, and the boundary effect is ex-

pected to become less predominant. Nonetheless, an accurate assessment of T-S

wave generated sound is still impossible unless those artificial boundary effects are

eliminated or adequately accounted for.

In view of the small effect of T-S waves on sound radiation, we decide to con-

centrate on a practically more important issue - the sound generated by a local
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FIGURE 2. Streamwise disturbance velocity (U 1-ulmean) as a function of xl at four

x2-1ocations (_ x2 = 0.44, .... x2 = 1.35, ----- x2 = 3.02, ----- x2 = 7.87) in

a Blasius boundary layer. The T-S waves are caused by a 2-D upstream excitation

given in (13). (a) e2D ---- 0.005, and (b) _2D ___ 0.05.

breakdown of the laminar boundary layer.

_.3._ 3-D laminar breakdown

Simulations are under way for the three-dimensional development of boundary

layer instability that leads to laminar breakdown of the fundamental type. In or-

der to enhance grid resolution as well as to isolate the true acoustic source from

boundary-induced artifacts, the eigenmode excitation described in (13) is multiplied

by exp[-((t-80)/40)4]. This creates a perturbed flow region of limited streamwise
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FIGURE 3. Longitudinal quadrupole Qal calculated using (12) for the case of a 2-D

wave packet crossing the source region. The wave packet is created by disturbing

the upstream boundary for a short time duration, e20 = 0.01 and e3n = 0.

extent, completely enclosed within the computational domain. Numerical experi-
ments show that the isolated wave packet evolves in a way similar to that for regular

T-S wave series in forced transition, at least up to the multiple spike stage.

The following parameters are employed in the simulation: Re_ = 1000, e 2D =

0.025, eaD = 0.01, 0 = 0, ¢ = _r/4, and /3 = 0.094. The latter corresponds to

the least stable frequency for 2-D T-S waves at inflow. Computations start out

on a 514 x 98 x 66 grid covering a physical domain defined in 0 _< xl _< 180,
0 < x2 _< 20 and 0 < x3 < Az, where Az m, 25.95 is the spanwise wavelength.

As a detached high shear layer appears in the peak xl-x2 plane (cf. Fig. 4a), the

spatial resolution demand becomes increasingly severe for the unstable region as

the secondary instability intensifies and higher instabilities develop. Meanwhile,
the flow field for xl < 50 has become basically steady after the passage of the

disturbance structure. Consequently, the inflow boundary is moved from xl = 0 to

50, and the solution is interpolated onto a refined grid of 1026 x 98 x 130.

Results of the ensuing computation are exemplified in Figs. 4b-4d, which, like
Fig. 4a, plot the spanwise vorticity contours in the peak plane. The spatial reso-

lution requires further improvement. Nonetheless, these plots capture the essential

features of the shear layer roll-up and the formation of one, two, and multiple spikes

as time progresses.

Figs. 5 depicts time-variations of the quadrupole acoustic source terms Qij cal-

culated from (10), again under the compact source assumption. In the calculation,

Lighthill's stress tensor is approximated by the Reynolds stress only; the viscous
stress contribution, computed separately, is found to be a factor of 10 -3 smaller.

The time instants corresponding to the four snapshots depicted in Fig. 4 are marked
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FIGURE 4. Instantaneous spanwise vorticity contours in the peak xl-x2 plane

during breakdown of high-shear layer. (a) t = 279; (b) t = 305; (c) t = 326; and

(d) t = 335.
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FIGURE 5. quadrupole acoustic source terms (-- Oil, .... 02_, -----

--'-- Q12) calculated using (10) during high-shear layer breakdown.

marks t,, tb, t_ and td correspond to the four snapshots in Fig. 4.
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FIGURE 6. Surface dipole source (_/_1, .... /_3) calculated using (10) during

high-shear layer breakdown. The tlme marks t=, tb, tc and td correspond to the four

snapshots in Fig. 4.

as t=, tb, to, and ta in Fig. 5 for clear comparison. Due to symmetry with respect

to the peak plane, 813 and 823 vanish. The other four source terms are seen to

develop oscillations with higher frequency components relative to the basic T-S

wave frequency (the T-S wave period _. 66.8). Apparently, these higher harmonics

are associated with the roll-up of the detached high-shear layer. During the same

time period, the surface dipole it1 calculated from (10) is still dominated by low

frequency behavior, as demonstrated in Fig. 6. However, it is expected to rise in

both frecluency and amplitude as the shear layer near the wall intensifies. The other

dipole, R3, is identically zero again due to symmetry.

Because of insufficient data and relatively poor resolution for the source flow

simulation at the present stage, a more quantitative analysis of acoustic implications

is deferred to future work.

3. Future plans

The first priority is to improve the accuracy of the source field computation by

grid refinement and optimization so that reliable results for more advanced transi-

tion stages can be obtained. A nonuniform mesh in the streamwise direction should

allow much better resolution in the region of intense shear without increasing the

total number of grid points in that direction. As pointed out by Zang et al. (1989),

resolution requirements for numerical simulations of transition are extremely se-

vere, and inadequate resolution may result in less intense detached shear layers and

premature roll-up.

Once an accurate source field is obtained, attention will be focused upon the

radiated acoustic waves. We will analyze the sound characteristics mid directivity
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associated with specific source mechanisms during boundary layer transition, and

we will identify the dominant contributors to the radiated sound field. The analysis

will not be restricted to compact sources; a more general formulation based on (8)

should be used to investigate the effect of non-compact source distributions.

In the long run, it would be of interest to study the sound of turbulent spots

and to compare the results with those due to laminar breakdown. A more difficult

extension of this work would be to include the coupling between the fluid motion

and the vibration of an elastic plate. Such flow-structure interactions are often

the dominant source of sound production and are, therefore, of great practical

importance.
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